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Abstract— Asking questions is an inevitable part of collabora-
tive interactions between humans and robots. However, robotics
novices may have difficulty answering the robots’ questions
if they do not understand what the robot is asking. We are
particularly interested in whether robots can supplement their
questions with information about their state in a manner that
increases the accuracy of human responses. In this work, we
design and carefully analyze a human-robot collaborative task
experiment to measure humans’ responses and accuracies to
different amounts of supplemental information. We vary the
content of the questions along four dimensions of the robot
state, namely uncertainty, context, predictions, and feature
selection. Based on our results, we contribute guidelines on
the effective combination of the four dimensions, under the
assumption that the robot has no limitations on generating
question context. Finally, we validate our guidelines against
educated recommendations from the HRI community.

I. INTRODUCTION

Despite significant advances in robot navigation and obsta-
cle detection, it is still difficult for robots to autonomously
move about our buildings. Although we aim to contribute
to the objective of autonomous robots, we realize that a
mobile robot equipped with any number of sensors — even
powerful ones — may not be able to process complex
environments enough to act fully autonomously. Thus, our
approach to robot autonomy is to support the ability of robots
to proactively seek human assistance if needed.

When humans ask for assistance from other humans, it
has been shown that the language used in a question can
affect how people answer it, both in terms of the language
used in the answer and the correctness of the answer [1].
Additionally, while humans share common experiences and
can take each other’s perspective easily to answer questions,
they also provide contextual information when necessary
to supplement their questions [2]. Based on these phenom-
ena, the social psychology and human-computer interaction
(HCI) communities have developed guidelines on how to
write survey questions and for techniques like focus groups,
interviews, cognitive walkthrough, and pretests to help re-
searchers iterate on and improve their questions, to reduce
any possible ambiguities that people may find [3].

While there has been a large human-robot interaction
(HRI) effort in providing techniques for building socially
acceptable robots, and robots that understand human social
cues (e.g., [4], [5]), there has been little focus on the
language robots should use when asking for assistance. In
situations where robots are allowed to ask verbal questions
of their human collaborators, there is often no information,

guidelines, or theory about how questions are formatted
or asked (e.g., [6], [7]). Instead, the robot’s questions are
typically developed by the robot programmer and based on
his or her intuition from human-human interaction of how
questions should be asked. If the intuition is wrong and the
robot’s questions are not clear enough, humans (especially
non-experts in robotics) may not be able to understand the
robot enough to give accurate responses.

The focus of our work is to understand how to make the
robot understandable to robotics novices such that if it asks
a human a question, the human can understand the robot’s
perspective and then respond as accurately as possible. In
this paper, we explore this concept in the context of a
classification task, in which a robot attempts to classify
blocks that it sees in its camera view by shape (e.g., cube,
cylinder), and we model the robot’s state for this task as a
tuple of:

o Context: The current sensor information related to the
task (e.g., position, color, # of visible sides of the block);

o Prediction: The classification of the current context
(e.g., cube, cylinder);

o Uncertainty: The probability the classification is incor-
rect (p € [0, 1]);

o Features: The critical features from context used to
determine the classification (e.g., # of sides).

When the robot has high uncertainty, it can ask a human
questions about a shape while varying whether it explicitly
includes information about each part of its state. We assume
that the robot has “no limitations” in terms of its capabilities
to generate questions. However, to eliminate all factors of
uncertainty except for the content of the questions, we
use a Wizard-of-Oz study with a robot embodiment and
synthesized speech to ensure that the same questions are
asked about the same blocks for each participant.

In this work, we present a method and subsequent guide-
lines for designing questions based on state information that
robots can ask humans to maximize the accuracy of re-
sponses. First, we review how previous agents have explicitly
explained their state to increase their usability. Then, we
present our approach to studying subjects’ accuracy based on
the robot’s questions and state information. Using the results
from the study, we contribute a set of guidelines on the most
effective combination of these four guidelines, for improving
the accuracy of human responses to questions from robots.
Finally, we validate these guidelines against current HRI



heuristics for robots asking questions and conclude that using
our guidelines results in higher accuracy in human responses
than using the heuristics.

II. RELATED WORK

Human-human interactions are typically grounded in com-
mon experiences that we all share or expect that we have
shared [2]. When one of the participants in a conversation
is not sure that the other has the relevant background to
understand a topic, he explicitly states the context before
explaining the topic. Because robotics novices do not share
common bonds with robots, the intuition is that we should
require robots to explicitly explain their state to humans to be
understood [8]. We define the robot’s state in a classification
task as the tuple (context, prediction, uncertainty, features).
The robot represents its current sensor readings and any
higher level inferences through context. The robot makes a
prediction about how to classify the context, using a subset
(either learned or static) of features € context and maintains
a probability uncertainty that it believes the prediction is
incorrect. The robot can then use this state information to
explain its current situation and request assistance, varying
which dimensions it provides to the human.

Individually, each dimension of state has been shown to
improve usability and even the accuracy of the responses of
systems that require human interaction. Studies of context-
aware, expert, and recommender systems all show that
providing users with the level of uncertainty in a system’s
predictions improves its overall usability (e.g., [9]). Users
are more willing to answer if they know it is asking because
it is uncertain, rather than at a random time. Additionally,
some results show that the exact uncertainty information
is not necessary to improve performance, only the explicit
mention that the system is uncertain [10]. Studies have
shown that when the human and robot share a common
frame of reference or context in the environment, they can
communicate more effectively (e.g., [11], [12], [13]). When
a semi-autonomous robot asks a human for help, it requires
additional effort on the part of the human to understand
what is being asked, limiting their productivity (e.g., [14]).
In both HCI and HRI, there has been an effort for agents
to proactively provide predictions of the next action to take
and warnings that errors are about to occur in order to reduce
the cognitive load of humans who are assisting them (e.g.,
[14], [15], [16]). Finally, users can provide useful feedback
to these systems about the features they would use to make
a classification [17].

In situations where robots ask questions, there is often lit-
tle support for how the content of the questions is generated.
Some questions offer no state information at all (e.g., [7]),
while others provide all state information leaving the human
to sort through it (e.g., [14]). Other robots provide predictions
but without uncertainty information or other context (e.g.,
[6]). It is unclear which pieces of information are most
important for the robot to give and which are excessive and
in which situations. Additionally, because existing work does
not vary the state information that users are provided, it is

unclear if there is other state information that would increase
the accuracy of the users’ responses. The goal of our work is
to present a method and subsequent guidelines for designing
grounded questions based on state information that robots
can ask human collaborators to maximize the likelihood of
a correct response.

III. METHOD

We conducted a study to test the correctness of users’
answers to a robot’s questions based on the content of
the questions asked. The robot was given a block shape
recognition task, simulating camera-based object detection,
in which it watched study participants build structures out
of blocks. As the participants, who are typically good at
identifying shapes, built their structures, the robot interrupted
to ask for assistance if it did not recognize a block shape
being used. We use an object recognition task because it is
easy to assess ground truth and measure correctness: i.e.,
confirming that the block the robot asks about matches the
block the human describes and that the human describes
that block correctly. To understand how a robot can ask
questions to optimize the correctness of the responses it
receives, we vary the content of the robot’s questions based
on the dimensions presented above and measure both the
correctness of the responses and the user’s opinions of the
questions. While the content of our questions reflect the
shape recognition task, the state information that we include
and resulting guidelines can be easily generalized to other
classification problems.

A. Task

The participants’ primary task is building structures out of
blocks in a timed setting. They sit in front of the robot and
are given a set of 50 wooden blocks, containing 6 different
block shapes in 5 different colors. The subjects are given
4 pictures of block structures (Fig 1(a)), each composed of
20-35 blocks, to build in 12 minutes. The subject is told
the robot is learning to recognize block shapes. Humans are
better at recognizing objects and robots can leverage this
ability by interrupting the human to ask questions about
those objects. If participants have time while performing their

(a) Block Structure

(b) Robosapien V2 robot

Fig. 1. The Robosapien V2 robot watches participants build structures and
asks questions about the blocks it cannot recognize.



TABLE I
CONTENT DIMENSIONS, DESCRIPTION, AND EXAMPLE SENTENCES FROM THIS STUDY.

the block shape before asking the question

State Dimension Description Example Sentence
Context The amount of contextual information the local (color): “You are working with the green and red
robot gives the human about what it is blocks.”
perceiving (none, local, global) global (color and position): “You are working on the top
left column of the structure with green and red blocks.”
Prediction The robot tells the human which shape it predicts “It might be a cube.”
Uncertainty The robot notifies the human that it is uncertain of | “Cannot determine the shape.”

Feature Selection

The robot asks the human why it is a certain shape
(expected answer is a description of the block)

“Why?”

primary task, they can help teach a robot to recognize block
shapes by answering its questions.

Participants are then reminded that answering the robot’s
questions will slow them down in completing their primary
building task. However, they are given a delayed incentive to
answer the questions - they are told that they will be given
a second building task that the robot will help them finish
more quickly if they help it learn block shapes during the
first building task. This tradeoff between future incentive and
present delays may cause people to ignore the robot or rush
to answer its questions instead of spending extra time to
help it. However, although answering questions takes more
of the human’s time, recent work in classifying email has
demonstrated that a human may be more willing to give
more time to provide the feedback, if it may decrease the
possibility of additional interruptions [17] [18]. We model
this tradeoff to get a more accurate understanding of how
people answer questions under pressure of their own goals
and motivation by future incentives. Participants are not
actually given this second task.

A Wizard-of-Oz’ed RoboSapien V2 (Fig 1(b)) robot
watches subjects build with blocks. The robot was prepro-
grammed to follow faces and red, green, and blue colored ob-
jects with a built-in color camera. Colored LEDs on the robot
rotate towards the colored objects as they move across the
robot’s field of vision. This behavior helps create the illusion
that the robot is watching the participants build the structures.
As subjects build the structures during the task, the robot
interrupts with questions claiming it cannot determine the
shape of the block being handled. The robot asks questions
about 2 blocks for each structure the participants build, for
a total of 8 questions. The questions were generated ahead
of time based on specific blocks in the structures and the
audio files based on these questions were played via speakers
hidden behind the robot. This gave the appearance that the
robot was asking the questions. Our Wizard-of-Oz design
ensured that all participants were asked questions about the
same blocks with the same timing.

After completing the task or after time has expired, partici-
pants are given a survey about their opinions and experiences
with the questions the robot asked. After completing the
survey, they are told there is not enough time to conduct
the second building task with the robot’s help. Participants
are then paid and dismissed.

B. Robot State and Questions

Although the robot is Wizard-of-Oz’ed, we model the
robot’s state using the same four dimensions described in
Section II. We assume that the robot has the capability to find
a block in an image, determine context like its color, location,
the number of visible sides and edges, efc., and then make
a prediction about the block shape with some uncertainty
using a subset of features from the context. We then vary
which dimensions the robot uses in questions for a 3x2x2x2
design. We study every combination of state dimensions
the robot can provide while asking a question in order to
determine which combination results in the most accurate
responses from humans. Table I outlines each dimension, the
information the robot provides if the dimension is included,
and an example of how the dimension translates into the
robot’s question for this task.

1) Context: We vary the amount of context the robot
gave about the shape it asks about, to understand how
much information is “excessive” for the subjects to receive.
Participants receive one of three conditions: no contextual
information, local context of the colors of nearby blocks,
and global information including color plus the position of
the block in the structure. Participants who receive global
context heard statements like “You are working on the top
left part of the structure with green and red blocks. While the
local context condition always provides enough information
to find the block in question, the global information provides
participants with an extra confirmation that they found the
block the robot is referencing.

2) Prediction: Half of the users received a correct predic-
tion from the robot about the block they are using (e.g., “It
might be a cube.”) and half do not receive any prediction.
Because the robot always gives a correct prediction, we can
measure how often a human trusts the robot prediction but
cannot measure the impact of incorrect predictions.

3) Uncertainty: The robot tells half of the participants
that it “Cannot determine the shape” and does not mention
uncertainty to the other half. It is not necessary to provide
exact uncertainty data, only to admit that it is uncertain [10].

4) Feature Selection: We vary whether the robot asks the
human an additional question about which features it used
to classify the block (e.g., “Why is the block a cylinder?”).
We expect a participant might say that the ends are circles,
identifying the critical features they use to classify the
cylinder. Although the robot in the future may be able to



parse the response, we do not and only study whether asking
this question (and receiving the extra answer) affects the
classification accuracy.

5) Putting it Together: When the robot is able to provide
all of its state information including global context, it might
ask a human the following question about a block:

Robot: “Cannot determine the shape. You are working on
the top left part of the structure with green and red blocks.
What shape is the red block? It is likely a cube.”

Human: Answers e.g., “It is a cube”

Robot Follow Up: “Why?”

Human: Answers e.g., “It has six sides - all squares.”

However, if the robot provides local instead of global
context, predictions, and uncertainty, but does not ask about
feature selection, it would say:

Robot: “Cannot determine the shape. You are working
with green and red blocks. What shape is the red block?”
Human: Answers e.g., “It is a cube”; no robot follow up

Participants consisted of 37 Pittsburgh residents ages 18-
61 with a variety of occupations including students, bar-
tenders, teachers, and salesmen. Participants had no expe-
rience with robots and only a few (15%) had experience
with technology that learns. All spoke fluent English. Each
participant was assigned to one of the 24 (3x2x2x2) com-
binations of state information randomly but evenly. All of
the conditions were performed by one person first and the
conditions that were repeated were chosen randomly.

C. Measures

Because a robot would benefit more from correct answers
than from incorrect ones, we assess the user responses to the
questions primarily based on correctness. Users’ responses
are classified as correct answers if their last answer (some
users changed their minds) is correct and incorrect otherwise
(Table II). For example, if a subject disagrees with the
suggestion, but gives an equally correct reference, it is
classified as correct:

Robot: It is likely a cylinder. Subject: No, it is a log.

As a secondary measure, we gave subjects surveys about
their opinions of the questions the robot asked. This included
whether they thought the robot’s questions were annoying
and whether they found each of the four dimensions useful
or not. Answers were coded as either “Yes” or “No” to each
of the five questions.

TABLE 11
CODING FOR CORRECTNESS

[ Category [ Description [ Examples |
Agree “Yes” or “That’s right”
Correct Correct label “Cylinder” or “It is a log”
Correct disagree | “No its a log”
Disagree “No” or “No, its a *”
Incorrect | Incorrect label “cube” instead of “cylinder”

No response “I don’t know”

IV. RESULTS

Here, we present the results of the study we conducted
to optimize the frequency of correct responses to the robot.
We analyzed the data to find the overall best combination of
dimensions, assuming the robot has unlimited capabilities.
In the next section, we validate our findings against a com-
bination of the dimensions that a group of HRI specialists
chose.

A. General Statistics

The robot asked all subjects at least 5 of the 8 possible
questions, with some subjects running out of time and others
choosing not to answer. There was no significant difference
in the number of questions answered for any dimension.
McNemar tests with the 2 statistic were used to analyze the
significance of the categorical response (correctness) against
the categorical independent variables (our four dimensions).
We will use the significant results to develop guidelines about
how robots with unlimited capabilities should ask questions
and test these guidelines against input robotics experts gave
about question content.

B. Quantitative Results

We analyzed the effects of each individual dimension
on the proportion of correct answers the robot received.
Figures 2(a) and 2(b) show the percentage of questions
that were incorrectly answered for context and suggestions,
respectively. Subjects made statistically significantly fewer
errors as they were given more context, dropping from 42%
(none) to 23% (local) to 10% (global) (x?[2,2] = 8.61,p <
0.02). Subjects made significantly fewer errors when they
received suggestions (10%) compared to when they did not
(25%) (x*[1,1] = 3.59,p < 0.05) and made fewer errors
when asked about feature selection (10%) compared to when
they were not (19%) (x*[1,1] = 4.05,p < 0.05). There
were no significant effects of uncertainty alone, but we
found a significant paired effect of uncertainty and context
(x%[2,2] = 5.98,p < 0.05). There were no other significant
effects.

C. Qualitative results

Subjects did not find any combination of dimensions, even
the ones with extra context, more annoying than the others.
Of the participants who received additional feature infor-
mation, suggestions, uncertainty or contextual information
(local and global), 35%, 64%, 37% and 71%, respectively,
found them to be useful.

D. Discussion

Our results show that all four dimensions show statistically
significant differences in how people respond to the ques-
tions. Additionally, a majority of users found that the robot’s
contextual information and suggestions were beneficial and
helped them respond. Using these results, we can conclude
that for a robot with unlimited resources, it is optimal to
give humans information about uncertainty, global context,
prediction, and feature selection. We add the provision that
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they should be used only when necessary so that subjects are
minimally annoyed.

V. VALIDATION

We asked for advice from 3 members of the HRI com-
munity about how robots should formulate their questions
along our dimensions. Because robots’ questions today are
largely based on a researcher’s input, their response acts as
a baseline to test our guidelines against. We validate that
our guidelines are at least as good as, if not better than, the
heuristics used by these HRI community members.

A. HRI Heuristics

We explained each dimension to the 3 HRI researchers
and explained how to combine the dimensions. The group
discussed the dimensions and then reported their consensus.
They concluded that along our dimensions, they would
formulate questions that include uncertainty, local context,
no prediction, and feature selection. This varies from
our guidelines in two ways - the amount of contextual
information and offering predictions.

B. Validation Method

We conducted a within-subject study in order to validate
that our guideline improves the proportion of correct answers
that people give the robot compared to the community
input. Fourteen participants were told that they would be
testing two different ways the robot learns from asking them
questions. Similar to the first study, participants were told
that they would complete both “learning” tasks to teach
both robot programs and then later they would complete
performance tasks to test how well the robot learned from
them. As with the previous study, the robot was Wizard-of-
Oz’ed and the robot was not actually learning. The order
of the two conditions was randomized in addition to the
order of the two sets of four block structures to be built.
Each “learning” task was 12 minutes long and the subjects
were given surveys after each task. Then they were told they
did not have time to complete the performance tasks. The
participants’ answers were scored for correctness as before.
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Subjects made significantly fewer errors as they received 2(a) more contextual information and 2(b) suggestions.

C. Validation Results

T-tests were used to analyze the significance of the cate-
gorical response (correctness) against the two sets of guide-
lines (ours and the community advice). There was no signifi-
cant effect in the ordering of the conditions (¢[186, 1] = 0.00,
p > 0.05). Figure 3 shows the percent of questions subjects
answered incorrectly for each condition. There are significant
effects of the choice of guidelines on the proportion of
correct answers subjects gave. Subjects provide significantly
more correct answers (2.22% error) to the robot’s questions
when using our guidelines compared to the community
advice (15.63%) (t[186,1] = 10.05, p < .01).

Participants were asked, for each system, whether they
thought each dimension was useful in helping them to answer
the robot’s questions. Subjects only scored the two systems
differently for the contextual information dimension. While
six participants gave our questions (with global context) a
score of 5 (very useful) for contextual information, only
two participants gave the community input questions (with
local context) the same score. Subjects were given another
survey at the end of the experiment asking which system
they preferred, which they thought was smarter, and which
learned more. On all three survey questions, our guidelines
scored higher. Twelve out of fourteen respondents preferred
the system using our guidelines over the system that used
the community advice, eleven thought ours was smarter, and
ten reported they thought ours learned more.

D. Discussion

Our results show that although participants gave a majority
of correct answers to both robot systems, they provided
significantly more correct answers for our guidelines. Using
our systematic approach to testing the robot’s questions, we
found that robots that ask questions should also provide all of
its state information along our four dimensions (uncertainty,
global context, prediction, and features). Our subjects were
able to take the robot’s perspective easier and answer the
robot’s questions more accurately when they received all
of the state information compared to when some of the
information was left out. Despite our intuition that providing
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guidelines compared to the HRI heuristics.

more context (global) would be overwhelming or annoying
to humans, our subjects found the additional confirmation
that they had found the correct block more useful and less
annoying than we expected. Additionally, although we found
that our subjects did not always trust the prediction the robot
gave, it did significantly increase the accuracy of subjects’
responses.

Researchers can leverage these guidelines directly for use
in their research without relying on their own intuition to
generate questions for their robots to ask. We do, how-
ever, acknowledge that our state information may not be
directly applicable to all robots or all tasks. Our guidelines
assume that the robot has unlimited resources to calculate
predictions, uncertainty, and the relevant features as well
as unlimited resources to generate questions. We offer our
method as an approach that other researchers can use to
test their own questions for their own tasks to maximize
the accuracy of the responses that their robots receive.

VI. CONCLUSION

Clear communication between robots and humans is nec-
essary for collaboration. Humans must understand what their
robot counterparts are asking about in order to give them
correct information. Previous work in robot question-asking
has not focused on validating the robot’s questions to ensure
that humans understand the questions and can correctly
respond. The contribution of this work is two-fold. First, we
formulate an approach to testing the validity of questions that
a robot may ask. We show that this approach successfully
identifies questions that humans respond well to, and provide
the method for others to study the questions their robot asks.
Second, we describe a set of guidelines derived from the
results of our study for designing questions for robots to ask
humans, validate them against current HRI heuristics, and
show that our guidelines significantly increase the number
of correct answers for classification questions that a robot
asks.

This work focuses on a specific set of dimensions for
classification problems. Additional work is needed to provide
guidelines and validation of other types of questions a robot
may ask and other dimensions that may affect how humans

understand and answer questions. Our work also does not
focus on how robots can use the answers they receive from
humans to incorporate them back into their models. Future
work is necessary to investigate, for example, how to label
the robot’s real time sensor data using human feedback
(especially verbal feedback).
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