
Modeling Humans as Observation Providers using POMDPs

Stephanie Rosenthal and Manuela Veloso

Abstract— The ability to obtain accurate observations while
navigating in uncertain environments is a difficult challenge
in deploying robots. Robots have relied heavily on human
supervisors who are always available to provide additional
observations to reduce uncertainty. We are instead interested
in taking advantage of humans who are already in the envi-
ronment to receive observations. The challenge is in modeling
these humans’ availability and higher costs of interruption
to determine when to query them during navigation. In this
work, we introduce a Human Observation Provider POMDP
framework (HOP-POMDP), and contribute new algorithms for
planning and executing with HOP-POMDPs that account for
the differences between humans and other probabilistic sensors
that provide observations. We compare optimal HOP-POMDP
policies that plan for needing humans’ observations with oracle
POMDP policies that do not take human costs and availability
into account. We show in benchmark tests and real-world
environments that the oracle policies match the optimal HOP-
POMDP policy 60% of the time, and can be used in cases
when humans are likely to be available on the shortest paths.
However, the HOP-POMDP policies receive higher rewards in
general as they take into account the possibility that a human
may be unavailable. HOP-POMDP policies only need to be
computed once prior to the deployment of the robot, so it is
feasible to precompute and use in practice.

I. INTRODUCTION

Robots have relied primarily on supervisors or oracles
such as teleoperators [1] and teachers [2] who are always
available to help them overcome uncertainty as they navigate
in the environment. However, as more robots are deployed in
our environments, it will become less feasible to supervise
each robot, and robots will have to seek help from other
humans that are already in the environment [3]. Instead, we
realize that as a robot navigates down an office corridor,
it may pass by people who could provide it additional
observations to help it perform its tasks.

These human observation providers have been under-
utilized in robot deployments because of the difficulty in
modeling both human availability and the costs of interrup-
tion and in planning for the possibility that those humans are
not available at execution time. In particular, these humans
may not always be available to provide observations and it
has been shown that there is an associated cost of asking
in terms of the annoyance of interrupting the human and
the time it takes for them to respond. A robot that executes
optimal actions without taking into account availability of
humans may fail to receive observations when it needs them
and may fail to perform tasks and navigate successfully.

S. Rosenthal is a PhD Student in the Computer Science Dept, Carnegie
Mellon University, Pittsburgh PA USA srosenth@cs.cmu.edu

M. Veloso is Herbert A. Simon Professor of Computer Science, Carnegie
Mellon University, Pittsburgh PA USA veloso@cs.cmu.edu

Towards the goal of planning when needing help, we
introduce Human Observation Provider POMDPs (HOP-
POMDPs) as a framework for reasoning about the locations
and limitations of humans in the environment. Similar to
oracular POMDPs (OPOMDPs [4]) which model the ability
to request help from supervisors, we rely on traditional
POMDP solvers for generating policies for HOP-POMDPs.
However, optimal HOP-POMDP policies will inevitably dif-
fer from OPOMDPs, as optimal HOP-POMDP policies plan
actions and queries based on the availability and costs of
asking different humans while the OPOMDP policies cannot.
As a result, an oracle policy may try to ask for help in a state
where the human is unlikely to be available.

Additionally, the execution of HOP-POMDP policies is
non-standard. In particular, POMDP execution assumes that
actions and observations are probabilistic due to noisy sen-
sors. While we model human availability probabilistically to
solve policies, during real-world execution, humans are either
available or not and the robot should not wait for a human
to become available. We contribute algorithms for executing
HOP-POMDP policies that prevent a robot from repeatedly
querying when there is no response from the human, but
allow the robot to come back to the same state to query later
if the policy indicates this as the optimal action.

We, then, contribute a comparison of HOP-POMDP and
OPOMDP policies for a benchmark task and show that the
policies differ 40% of the time, and the HOP-POMDP policy
receives almost twice the reward as the OPOMDP policy
in some cases. Finally, we model our building occupants’
availability and costs and discuss the differences in policies
in practice. We conclude that the HOP-POMDP policy only
needs to be computed once over the deployment of the robot
and the increased benefit is worth the precomputation time
compared to relying on oracle models.

II. RELATED WORK

We are interested in modeling humans in the environment
who can be queried to provide observations to a robot. Prior
work related to modeling and planning for human-robot
interaction can be characterized into two categories: those
in which the robot acts alone but can query a human during
execution and those that model humans at planning time.

A. Querying for Help During Execution

Humans have been shown to be able to provide observa-
tions to robots and can recommend actions to take if the
policy in a given state is unknown [1], [2], [5]. While there
have been many approaches to determining when a robot
requires help, most take a greedy approach by acting as



optimally as possible, querying for observations when there
is high information gain. This approach assumes that the
human is always available and is always queriable. However,
humans in the environment are not always available or
interruptible [6], [7], [8] and they may have a high cost of
asking or interruption [9], [3].

Because robots that query for help typically do not model
the humans they will be asking, they cannot make planning
decisions about where to travel to reduce the need for help
or how to receive the least costly and most likely help.

B. Planning for Help

Human-robot interactions (HRI) have traditionally been
modeled explicitly within the robot’s environment using
POMDPs (e.g., [10], [11]).

To briefly review, POMDPs ([12]) are represented as the
tuple {S,A,O,Ω, T,R} of states S, actions A, observations
O and the functions:
• Ω(o, s, a) : O×S×A - observation function, likelihood

of observation o in state s after taking action a
• T (s, a, s′) : S ×A×S - transition function, likelihood

of transition from state s with action a to new state s′

• R(s, a, s′, o) : S×A×S×O - reward function, reward
received for transitioning from s to s′ with action a and
observation o

There have been many proposed algorithms to solve the
state-action policy for the POMDP optimally, approximately,
and heuristically [13], but it has been shown that solving
them optimally is PSPACE-HARD [14], [15].

Multi-Agent POMDPs for HRI combine the possible states
of the robot R, human H , and the environment E to form a
new POMDP {SR × SH × SE ,A,O,Ω, T,R}. While these
Multi-Agent POMDPs model human actions and the robot’s
observation of those actions, it does now allow the robot to
explicitly query the human for help. Additionally, modeling
the human and robot jointly requires exponentially larger
state spaces which are less tractable to solve. Our work
incorporates humans into observations rather than state.

Recently, Oracular POMDPs (OPOMDPs) have been
proposed to plan for needing help using POMDPs with-
out modeling the human in states explicitly [4], [16].
OPOMDPs are formally defined as the tuple {λ,S,A ∪
{oracle},O,Ω, T,R}. They assume that there is an always-
available oracle that can be queried for observations with
action oracle from any of the robot’s states at a cost of asking
λ. The OPOMDP can be reduced to an MDP when a robot
asks for help after every action, and therefore approximate
OPOMDP solutions can be found quickly with algorithms
such as JIV [4] that compare the best MDP action (from
the QMDP policy [17]) with the cost of asking. We will
relax the availability requirements for OPOMDPs to model
human availability and adapt the JIV algorithm to take
this information into account. We will show that modeling
availability can result in increased reward during execution
compared to OPOMDPs.

Next, we formalize the limitations of humans as observa-
tion providers which we will use to define our HOP-POMDP.

III. HUMANS AS OBSERVATION PROVIDERS

Our [3], [8] and other prior work [6], [7] on human help
has shown that humans are not always available to help
and they have costs associated with being asked for help
related to their interruption and the time to respond. Without
taking into account availability and cost limitations of actual
humans, a robot may fail to perform its tasks. We formalize
these limitations within the POMDP framework, extending
OPOMDPs. In particular, we will model the probability of a
robot receiving an observation from a human in terms of the
human’s availability. We discuss the fundamental differences
between modeling the availability this way and modeling
sensor noise as probabilistic observations.

A. Availability

The availability of a human in the environment is related
to both their presence and their interruptibility [6]. If the
human is not present, then clearly he will not be able to
provide an observation. If a human is present but busy either
attending to another robot (not interruptible), or for example
on the phone, he may similarly not respond. We do not
distinguish these two types of non-responses as we define
availability as the robot may not be able to sense the human’s
presence and only cares about their response rate.

We define availability αs, known prior to planning, as
the probability that a human provides an observation in a
particular state s 0 ≤ αs ≤ 1. If there is no human available
in particular state, αs = 0. When a human provides an
observation, we assume it is an accurate observation. Let
os denote the accurate observation of state s when asked:

p(os|s′ 6= s, aask) = 0 (1)

Otherwise, they provide no observation onull. A human
provides observations with probability

p(os|s, aask) = αs (2)

and would provide no observation onull otherwise

p(onull|s, aask) = 1− αs (3)

This is to ensure that
∑

o Ω(o, s, ask) = 1.

B. Cost of Asking

In addition to availability, it is generally assumed that
supervisors or oracles are willing to answer an unlimited
number of questions as long as their responses help the robot.
In learning by demonstration, for example, while the goal is
to eventually stop asking questions, a supervisor will always
respond until the questions do stop. It has been shown,
however, that humans in the environment do have a cost
of asking in terms of the time it takes for them to answer
the question and the cost of interrupting them [3].

Let λs denote the cost of asking for help from a human hs
in state s. These costs vary for each person, but are assumed
to be known before planning. The reward for querying the
human if they answer with observation os is

R(s, aask, s, os) = −λs (4)



However, if the person is not available to hear the question
or provide a response, there is no expected cost.

R(s, aask, s, onull) = 0 (5)

Our reward structure has consequences that affect policy
solutions. In particular, the robot does not receive negative
reward when it tries unsuccessfully to ask someone for
observations so it can afford to be riskier in who it tries
to ask. We will discuss these consequences in the Results.

C. Observation Assumptions

Unlike sensors that provide observations probabilistically
to take into account noise, we realize that humans do not.
When a robot arrives at their location, the person is either
available to answer or is not. While we define the availability
as the probability of providing observations, this is not
completely true. When humans are available, we assume they
always provide observations. As a result, querying the human
multiple times (as is common in POMDPs to overcome
sensor noise) will not result in a human becoming available.

When planning, the robot should take into account the
likelihood of receiving a response based on availability (as
defined in Equations 4 and 5). However, when executing,
a human does not provide an accurate response proba-
bilistically. The robot should sense the availability of the
human while executing so that it does not query the human
repeatedly waiting for him to become available. We will
contribute an algorithm for avoiding multiple queries during
the execution of our model.

Next, we use these definitions to introduce Human Obser-
vation Provider POMDPs (HOP-POMDPs).

IV. FORMALIZING HOP-POMDPS

Let hs be the human in state s with availability αs and cost
of asking λs. We first define the HOP-POMDP for a robot
moving in the environment with humans. We then introduce
algorithms to solve and find a policy for the HOP-POMDP
and to execute that policy.

A. HOP-POMDP Definition

Let HOP-POMDP be the tuple {λ,S, α,A,O,Ω, T,R}:
• Λ - cost of asking each human
• α - availability for each human
• A = A ∪ {aask} - autonomous actions and a query

action
• O = O ∪ {∀s, os} ∪ onull - autonomous observations,

an observation per state, and a null observation
• T (s, aask, s) = 1 - self-transition for asking actions
Our observation function Ω and reward function R reflect

the limitations of humans defined in Section 3 (Equations 1-
5). The remaining rewards, observations, and transitions are
defined as with any other POMDP.

It is important to note that our model is based on prior
findings on non-supervisor availability [8]. Unlike Multi-
Agent POMDPs, our humans are not modeled in the states of
the HOP-POMDP, significantly reducing the number of states
and increases the feasibility of solving the HOP-POMDP

policies. Additionally, unlike OPOMDPs, the humans in the
environment do have varying availability and cost of asking.
Because our model includes these limitations, unlike other
approaches that query for help during execution, a robot
using our model can plan its policy to take these limitations
into account and determine how to navigate and who to ask
for observations.

B. HOP-POMDP Policy Solutions

HOP-POMDPs can be solved with any general POMDP
policy solver that allows for pure information gathering
actions (actions with no state change, only observations)
- heuristic MDP solvers (e.g., QMDP ) will not include
aask actions because they assume complete observability and
thus should not be used if the robot should ask for help.
Intuitively, we can roughly divide policy solutions into two
categories:

1) A robot could assume that the best navigational path
will contain available humans (as OPOMDPs do), or

2) A robot could also take actions to move towards
areas where help is more likely and less costly while
navigating to the goal.

A HOP-POMDP solver adapted from an OPOMDP, such
as JIV [4], does not take into account the human observation
provider availability when planning paths. It finds the best
path and asks along the way when it has high information
gain. Alternatively, optimal POMDP solvers can be used to
solve our HOP-POMDP policies and will take into account
human availability and the cost of asking using our obser-
vation function. As OPOMDPs have heuristic solutions that
can be solved more tractably than optimal POMDP policies,
we are interested in understanding the availability and cost
of asking parameters that would cause the two different
solvers to create different policies. We will compare adapted
OPOMDP policies with optimal HOP-POMDP policies on a
benchmark task and in our real-world environment.

C. Executing HOP-POMDP Policies

Before comparing the policies, we first must address the
difference that humans do not answer probabilistically as
typical sensor observations do. When executing heuristic or
optimal HOP-POMDP policies, the robot must sense the
availability of the humans. We assume that this can be done
at the time of the ask query. The human is available if the
observation os is provided and is not available if onull is
given. In real world experiments, the robot received onull if
the human did not respond with os within 30 seconds [8]. If
a human is not available, it is not feasible to execute aask
repeatedly until os is received because availability will not
change immediately.

Therefore, when the policy specifies aask but onull is
received on first query, policy execution should specify a
different action. For example, in our implementation, our
policy executes the QMDP policy action to avoid querying
a human that is unavailable. This change in policy when
humans are not available can also be implemented in the JIV
algorithm for OPOMDPs (Algorithm 1). The JIV algorithm



Algorithm 1 EXECUTE JIV(HOP-POMDP)
// Solve the underlying MDP

(QMDP , VMDP )← SOLVE MDP(S,A, T,R)
// Initialize the belief

b← b0
loop
// Find the best MDP action given

// the current belief

(vs, as)← BEST QMDP ACTION(b,A, VMDP )
// Determine the Information Value

// of asking a human

vh ← ρ(b, ask) + γ ∗ V JIV

// Ask a human if available and

// value of asking is greater than acting

if αs and vh > vs then
b← true state

else
b← τ(b, as)

end if
end loop

uses the QMDP policy to determine how to act but tests
whether there is an information gain in asking an oracle (if
the value of asking vh for knowing the true state is greater
than the QMDP value) [4]. We demonstrate this extension
in our adapted heuristic HOP-POMDP policy executor -
EXECUTE JIV - which determines the cost of asking using
the belief reward function ρ

ρ(b, aask) =
∑
s

−b(s)λs (6)

and tries only once to ask before executing another action

ask if αs and vh > vs (7)

While it is possible that the robot could leave state s after
querying once and return to the same state soon after, we
believe this is valid compared to asking continually without
trying a different path as it is possible for the human to have
arrived since the robot left the state.

We next compare these algorithms in terms of their acting
and querying policies and their final reward during execution.

V. COMPARING OPOMDP AND HOP-POMDP POLICIES

In order to understand the differences between the oracle
OPOMDP and optimal HOP-POMDP policies when tested
on humans with limited availability and varying costs of
asking, we compare Algorithm 1 to the execution of a
policy solved using the Witness algorithm [12] implemented
by Cassandra and distributed online [18]. For the purposes
of our example, the JIV heuristic OPOMDP solver plans
identical policies compared to optimal OPOMDP solvers.

We created a benchmark HOP-POMDP with two routes
to two goal states and systematically varied the cost of
asking each of two humans in the environment, the cost
of traveling to each human, and their availabilities and
executed the policies to understand how the reward differs.

Fig. 1. We varied the availability and cost of asking humans at states 2
and 3 along with the cost of traveling from state 1 to each of 2 and 3.

We, then, created a HOP-POMDP for our building based on
observed availabilities collected previously to show how the
two algorithms perform in practice on larger state spaces.

A. Benchmark HOP-POMDP

Our benchmark HOP-POMDP contains 5 states and 2
actions with two humans h2 and h3 (in states 2 and 3) and
two final states (4 and 5) (Figure 1).The robot starts at state
1 and chooses to take action B or C, where

T (1, B, 2) = 0.75 T (1, B, 3) = 0.25

T (1, C, 2) = 0.25 T (1, C, 3) = 0.75

The robot can then take action B or C from states 2 and 3
to states 4 or 5, where

T (2, B, 4) = 1.0 T (2, C, 5) = 1.0

T (3, B, 5) = 1.0 T (3, C, 4) = 1.0

However, the reward for state 4 is -10 and the reward for state
5 is +10. To be consistent with previous OPOMDP work, our
benchmark requires the robot to ask for help to receive an
observation and it receives no observations (onull) except
when it does ask for help. The robot has the opportunity
to ask for help in states 2 and 3 to determine its state and
ensure it receives +10 by choosing the correct action (action
C from state 2 and action B from state 3).

In our experiments, we varied the availability of each
human 0 ≤ α2, α3 ≤ 1 in increments of 0.1, the cost
of asking for help λ2 and the cost of traveling to state 2
R(1, B, 2, ∗) each with the values in Table I while keeping
λ3 = 1 and R(1, C, 3, ∗) = 1.

Cost of asking and cost of traveling to state 2
0.125 0.25 0.5 1.0 2.0 4.0 8.0

TABLE I
WE VARIED THE COST OF ASKING h2 AND THE COST OF TRAVELING TO

STATE 2 WITH THE SAME VALUES.

In total, we tested a simulated robot navigating using 5929
combinations of cost of traveling, availability, and cost of
asking to understand the differences between the OPOMDP
and optimal HOP-POMDP policies. We compare the policy



State 1 - Optimal Policy for α2 = 1.0 and α3 = 0.0
cost of cost of traveling to state 2
asking h2 0.125 0.25 0.5 1.0 2.0 4.0 8.0
0.125 B B B C C C C
0.25 B B B C C C C
0.5 B B B C C C C
1.0 B B C C C C C
2.0 C C C C C C C
4.0 C C C C C C C
8.0 C C C C C C C

TABLE II
ALTHOUGH α2 = 1.0 AND α3 = 0.0, THE OPTIMAL HOP-POMDP

POLICY CHOOSES ACTION C WHEN THE COSTS OF ASKING h2 AND THE

COST OF TRAVELING TO h2 ARE HIGH.

in state 1 (taking action B or C), whether the human is
queried for an observation, and the average collected reward
over 1000 executions of each policy. As discussed in the
previous section, we limited the robot to only a single
attempt to ask a question per execution - the robot could
not continually query the same human until they provided
an observation.

1) Policy in State 1: As expected, the OPOMDP policy
always chooses action C in state 1 when R(1, B, 2, ∗) <
R(1, C, 3, ∗) irrespective of the availability of the humans
because it takes the shortest path expecting to find a human
along the path. The optimal HOP-POMDP policy is different
from the OPOMDP policy in 39.67% of the tests because it
takes into account who is available and their costs of asking.

Interestingly, as human h2 becomes more available, the
optimal HOP-POMDP policy chooses action B less often
than the OPOMDP policy because the costs of asking is
taken into account. For example, at the most extreme when
α2 = 1.0 and α3 = 0.0, the policy chooses B in only the
cases when the cost of asking and traveling to state 2 are less
than those to state 3 (Table II). The HOP-POMDP policy
tries to ask the less expensive human even if they are less
likely to be available because there is no cost for failing to
ask a human but the cost is high for asking someone who
does not want to be asked.

2) Deciding Whether to Ask: We find that the OPOMDP
policy queries the human in state 2 or 3 after executing the
action B at all times except when the cost of asking h2 is 8.0
and the cost of traveling to state 2 is ≤ the cost of traveling
to state 3 (Table III). In other words, the OPOMDP policy
does not ask when it has taken action B and the cost of

States 2 and 3 - OPOMDP Policy for Asking ∀α2, α3

cost of cost of traveling to state 2
asking h2 0.125 0.25 0.5 1.0 2.0 4.0 8.0
0.125 Y Y Y Y Y Y Y
0.25 Y Y Y Y Y Y Y
0.5 Y Y Y Y Y Y Y
1.0 Y Y Y Y Y Y Y
2.0 Y Y Y Y Y Y Y
4.0 Y Y Y Y Y Y Y
8.0 N N N N Y Y Y

TABLE III
BASED ON THE COST OF ASKING AND THE COST OF TRAVELING TO THE

HUMAN, THE POLICY DETERMINES THAT IT SHOULD NOT ASK (N) WHEN

THE COST OF ASKING IS 8 AND THE COST OF TRAVELING IS ≤ 1.

Fig. 2. The optimal HOP-POMDP policy reward for α2 = 1.0, α3 = 0.0
is 8.54 (light gray). The OPOMDP policy reward is equal for high costs of
asking h2 but drops significantly to an average of 3.54 (dark gray).

asking human h2 is very high.
The optimal HOP-POMDP policy indicates that the robot

should ask for a human when one or both of the humans
has availability α > 0.1. This, again, is because there is no
penalty for asking if a human does not respond. It is worth
trying to ask for an observation when there is any chance
someone is available.

3) Average Reward: Finally, we compare the average
reward received using the OPOMDP policy with the reward
from the optimal HOP-POMDP policy. Over all costs of trav-
eling and asking, and availabilities, the average reward for
an optimal policy was 6.43 and the reward for a OPOMDP
policy was 6.01. We find that the rewards are the same when
the availability of the humans are the same (α2 = α3)
and when the cost of asking h2 is greater than the cost
of asking h3. The optimal HOP-POMDP policy reward is
almost double the OPOMDP policy reward in the worst case.

For example, when h2 has availability α2 = 1.0 and h3
has availability α3 = 0.0, the optimal HOP-POMDP policy
reward is on average 8.55 (min 6.92, max 9.78) (Figure 2
light gray). The OPOMDP policy reward (average 5.73)
is the same as the HOP-POMDP reward when the cost
of asking h2 is 2 or higher. However, the reward drops
significantly to an average of 3.54 for lower costs of asking
h2 (Figure 2 dark gray).

Next, we model our own building to demonstrate the HOP-
POMDP policies in a practical, larger-scale state space.

B. Real-World Building

We model the indoor robot navigation problem as a
HOP-POMDP in which the human observation providers
are the occupants of the offices around the building. Their
availability differs depending on their schedules and their
cost of asking depends on their willingness to help the robot.
We gathered this data through a study of the 78 offices over
9 test times collected over three days [8]. The availability of
our office occupants is shown in Figure 3(a) where darker
gray represents higher availability.

We tested the top portion of the building from the hallway
to the lab marked with an X, with a graph consisting of 60
nodes including 37 offices (Figure 3(b)). Taking an action



(a) Availability (b) Policies

Fig. 3. (a) We measured the availability of humans in each of 78 offices in
our building - darker gray represents higher availability. (b) The OPOMDP
policy takes the shortest path to the lab (dashed line) while the optimal HOP-
POMDP policy takes a longer route with more available people (solid).

between a current node s and a connected node s′ on the
graph had the following transition probabilities:

T (s, a, s) = 0.1 T (s, a, s′) = 0.9

We assigned a constant cost λ = −1 as the cost of
asking each occupant and a reward R(final, a) = 100.0 for
reaching its laboratory space. We were able to find an optimal
solution using the Witness algorithm for this environment
(unsurprising for the size of the environment).

The OPOMDP policy takes the shortest path (dashed line)
to the lab while the optimal HOP-POMDP policy takes a
longer route (solid line) that has more available building
occupants (Figure 3(b)). Because the costs of asking were all
the same, the difference in paths indicates that the likelihood
of finding an occupant to query is higher on the longer path
and results in a higher expected reward than the shorter
path. Interestingly, this same policy can be used for many
offices around the lab and remains constant throughout the
deployment of the robot. While the optimal policy takes
much longer to solve, the precomputation time may be worth
it to increase the expected reward and reduce the cost of
asking the humans along the suboptimal path or the cost of
replanning if a human is not available.

To summarize, we found that the optimal HOP-POMDP
policy is better in nearly 40% of our tests - surprisingly small
given that the OPOMDP does not take into account humans.
The optimal HOP-POMDP policy attempts to minimize the
cost of asking while maximizing expected reward, while the
OPOMDP policy only maximizes reward. As a result, the
optimal HOP-POMDP policy chooses to travel to the less
available but less costly human to reduce costs. Finally, we
found that the optimal HOP-POMDP policy does in fact
differ from the OPOMDP in practical environments with
more dispersed and less available humans, and therefore it
is reasonable to compute the HOP-POMDP policy to reduce
the expected cost of asking sub-optimal humans.

VI. CONCLUSION AND FUTURE WORK

We introduced Human Observation Provider POMDPs to
take into account the availability and cost limitations of hu-

mans, compared to Oracular POMDPs. We rely on POMDP
solvers for generating policies for HOP-POMDPs. However,
optimal HOP-POMDP policies can differ from OPOMDP
policies adapted for HOP-POMDPs and we realize that
the execution of HOP-POMDP policies is not standard
because humans do not provide probabilistic observations
due to noise like other sensors do. We have shown that the
OPOMDP policy is suboptimal nearly 40% of the time when
the shortest distance to the goal is not the one with the best
human to ask for observations. We conclude that, because
the optimal HOP-POMDP policy only has to be computed
once to be used throughout a robot deployment, it should be
used to ensure higher reward and better expected usability
for humans. For future work, we will test our policies on our
robot in our building to understand how the policies compare
in terms of human satisfaction and annoyance.

REFERENCES

[1] G. A. Dorais, R. P. Bonasso, D. Kortenkamp, B. Pell, and D. Schreck-
enghost, “Adjustable autonomy for human-centered autonomous sys-
tems,” in IJCAI Workshop on Adjustable Autonomy Systems, 1999, pp.
16–35.

[2] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[3] S. Rosenthal, J. Biswas, and M. Veloso, “An effective personal mobile
robot agent through a symbiotic human-robot interaction,” in AAMAS
’10, 2010.

[4] N. Armstrong-Crews and M. Veloso, “Oracular pomdps: A very
special case,” in ICRA ’07, 2007, pp. 2477–2482.

[5] H. Asoh, S. Hayamizu, I. Hara, Y. Motomura, S. Akaho, and T. Matsui,
“Socially embedded learning of the office-conversant mobile robot jijo-
2,” in IJCAI-97, 1997, pp. 880–885.

[6] J. Fogarty, S. E. Hudson, C. G. Atkeson, D. Avrahami, J. Forlizzi,
S. Kiesler, J. C. Lee, and J. Yang, “Predicting human interruptibility
with sensors,” ACM ToCHI, vol. 12, no. 1, pp. 119–146, 2005.

[7] M. Shiomi, D. Sakamoto, K. Takayuki, C. T. Ishi, H. Ishiguro, and
N. Hagita, “A semi-autonomous communication robot: a field trial at
a train station,” in HRI ’08, 2008, pp. 303–310.

[8] S. Rosenthal, M. Veloso, and A. Dey, “Is someone in this office
available to help me? proactively seeking help from spatially-situated
humans,” Journal of Intelligent and Robotic Systems, 2011.

[9] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine Learning, vol. 15, no. 2, pp. 201–221, 1994.

[10] S. R. Schmidt-Rohr, S. Knoop, M. Lösch, and R. Dillmann, “Reason-
ing for a multi-modal service robot considering uncertainty in human-
robot interaction,” in HRI ’08, 2008, pp. 249–254.

[11] A.-B. Karami, L. Jeanpierre, and A.-I. Mouaddib, “Partially observ-
able markov decision process for managing robot collaboration with
human,” Tools with Artificial Intelligence, vol. 0, pp. 518–521, 2009.

[12] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1-2, 1998.

[13] D. Aberdeen, “A (revised) survey of approximate methods for solving
pomdps,” National ICT Australia, Technical Report, 2003.

[14] C. Papadimitriou and J. Tsisiklis, “The complexity of markov decision
processes,” Mathematics of Operations Research, vol. 12, no. 3, p.
441450, 1987.

[15] O. Madani, “Complexity results for infinite-horizon markov decision
processes,” Ph.D. dissertation, University of Washington, 2000.

[16] E. Hansen, “Markov decision processes with observation costs,” Tech-
nical Report, vol. UM-CS-1997-001, 1997.

[17] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[18] A. Cassandra, “pomdp-solve software, version 5.3,” in
http://www.pomdp.org/pomdp/code/index.shtml, 2011.


