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Abstract—Recent work has suggested that a robot that in-
terrupts assigned tasks for the sake of curiosity is perceived
as less competent, but that communicating acknowledgment of
the curious behavior can mitigate some of those feelings [1].
In real-world situations, there are many reasons why a robot’s
task could be interrupted in favor of another. For example,
a robot handling requests for tasks from people in different
locations could navigate more efficiently if it interleaves those
tasks, but it ideally would not do so at the expense of the users’
perceptions of the robot. In order to understand the impact
of different task interleaving patterns on human perceptions
of a robot’s behavior, we performed a study in which a robot
performed a delivery task and an investigative task, interleaving
them in various ways. The participants were told either that
the investigative task was motivated by a request from another
person, motivated by curiosity, or they received no information
about why the robot performed the action. While participants
acknowledged that interleaving tasks should be allowed, they
rated the robot as more competent when its tasks were not
interleaved. They were most receptive to interleaving when they
knew the investigative task was for another person and less
receptive to long task detours away from the delivery route,
especially when the inspection task was motivated by curiosity.

Index Terms—curiosity, task requests, task interleaving

I. INTRODUCTION

Robots that operate in human environments need to account
for multiple factors when constructing and executing their
schedules, including both the efficiency of their actions and
the perceptions of their actions by people around them. This
is especially true when the robot is performing tasks for many
people. In such situations, the robot needs to balance requests
from different users in a way that gets all tasks done efficiently
as a whole, yet also conveys responsiveness and timeliness to
each individual user. For example, the robot may choose to
interleave a pickup and delivery task with an inspection task
by performing the navigation and pickup, then performing
the inspection task close to the pickup location, and finally
completing the delivery task. The interleaving may shorten
the robot’s overall path, but the owner of the delivery task
may perceive the robot as less efficient or competent if they
view the interleaving as a failure to prioritize their request.
This combination of factors suggests that such a robot should
schedule the tasks with reasoning more sophisticated than
either a simple FIFO (first in, first out) queue or a globally
optimal scheduling approach that minimizes travel distance.

Prior work [1] showed that when a robot performed off-
task actions while assisting a human user, the robot was
viewed negatively in terms of competence; when the robot
explained its behavior by saying it was curious, the negativity
was partially mitigated. This suggests that communication
can help convey responsiveness to user requests. The work,
however, is limited to truly off-task actions with no obvious
goal and did not consider how to combine communication and
scheduling strategies to bolster human perceptions of a robot
when interleaving tasks from multiple sources.

Here, we replicate this prior work and expand upon it to
explore those two limitations and be more applicable to real-
world scenarios. In our study, participants watched a video
of a robot that performed both delivery and inspection tasks,
interleaving these tasks in various orders to understand how
navigation efficiency impacts perceptions of the robots. The
delivery task was requested verbally by a “user” in the video,
while the inspection task varied in its source. We drew from
and built on the prior study, communicating the motivating
reason for the inspection task as either external from users,
internal from its own curiosity, or not at all. After watching
the video, participants were then asked a series of questions
about their perceptions of the robot in terms of its competence,
capabilities, efficiency, etc.; whether the sequence of tasks was
satisfactory; and whether there is an ideal order of tasks.

The study found that while participants acknowledged that
interleaving the tasks should be allowed in order to increase
efficiency and more than 2/3 of participants suggested an
interleaved execution for the robot, they rated the robot as
more competent when the robot did not interleave tasks and
instead performed them sequentially. This was true even when
sequential performance resulted in a less efficient path. When
the robot was interleaving the tasks, the participants rated the
robot more competent and were more satisfied with its task
order when they were told that the inspection task was for
another person (motivated externally) versus when they were
told the task was due to curiosity (motivated internally) or
when they were not told any reason. Overall, this work can
inform how robots should schedule tasks from users, how they
should communicate about their actions, and how those two
aspects of interaction can be combined to balance performance
with user satisfaction.



II. RELATED WORK

Variety of Robot Tasks: As we deploy more robots into
human environments, the robots often will be performing tasks
based on user requests (e.g., [2]), such as inspecting a location
or performing pickup and delivery. We could argue that these
tasks are “externally” motivated because a user gives a reward
when the task is completed. However, there are many other
opportunities for robots to perform tasks besides user requests.
For example, the robot may have opportunities to perform
information gathering or exploration tasks for the purpose of
collecting data to help it perform user tasks in the future
[3]–[5]. These information-gathering actions could also be
executed due to “curiosity” without a potential task in mind
[1]. In both cases, the motivation is internal, and there is often
an exploration reward distinct from the user’s task reward.

There have also been several instances of robots that per-
formed non-requested tasks for reasons besides curiosity. For
example, CoBot delivered Halloween candy for the purpose of
making users happy [6]. A more formal multi-armed bandit
model has been presented in which an agent could explore
possible tasks to perform for different people and learn to
optimize the reward structure in hindsight [7]. Additionally,
a robot could schedule tasks to transfer objects to another
robot to increase the efficiency of multi-robot tasks [8]. These
intermediate tasks represent deviations from user requests for
the purpose of increasing overall efficiency.

In this work, we compare externally motivated tasks per-
formed for a particular user’s request to tasks performed due
to internal motivation, such as curiosity.

Planning and Execution of Multiple Tasks: Tasks require
multiple steps, some long in duration like navigation, and
some short in duration, such as sending an email or speaking
a message. An inspection task could require navigating to a
location, performing a visual search task, and sending an email
report to a user. In contrast, a delivery task requires navigation
to a pickup location, acquisition of the object, and navigation
to the delivery location. At any step of a task, the robot could
switch to another task.

Methods for task scheduling include Markov Decision Pro-
cesses (MDPs) and other planning algorithms, like partial-
order planners [9], that determine optimal policies based on
transition functions and reward functions. There are also mixed
integer linear programs (MILPs) that assign start and end
times to tasks in order to optimize an objective function,
such as navigation time or shortest total schedule. Depending
on whether tasks are represented holistically with a single
start and end or as smaller steps, these algorithms could find
different schedules in which tasks are performed sequentially
or in which the steps of multiple tasks are interleaved.

Determining good times for task interleaving is challenging.
People choose to interleave tasks at natural breakpoints found
by clustering similar actions together [10]. Many studies of
human task interleaving showed the challenges of switching
tasks and staying on task, even when only switching across
multiple computer tasks (e.g., [11]). AI techniques for task

switching have also been proposed. For example, [12] studied
how to balance task priority when creating or updating task
schedules. Additionally, models of task interleaving based
on human demonstrations using hierarchical reinforcement
learning have been shown to be effective [13]. Recent work
has also shown that an MDP model could learn the tasks and
appropriate times to switch [14]. However, unlike our work,
none of this work addresses user perceptions of task switching.

Robots communicating about tasks: Robot communication
is a long-studied aspect of human-robot interaction (HRI) that
includes many aspects, including implicit communication [15],
unintended communication such as ascription of social and
human-like traits onto robots [16], and intentional, explicit
communication for various purposes, such as to bolster per-
ceptions of robots after errors [17]. Here, we are interested in
explicit communication about tasks.

The growing field of explainability is exploring ways that
robots can communicate their goals, actions, plans, and moti-
vations for a variety of applications (e.g., [18]–[20]). Of partic-
ular interest for this work is the description of the motivation
for executing a task. For example, [21] argued that a robot
should tell you what it is doing and why it needs you to move
from obstructing its path, but no algorithm or demonstration of
this behavior, such as what task it is performing, is presented.
Interestingly, [22] noted that the sort of explanation about the
tasks being performed and for whom could be a violation of
privacy. Walker and colleagues [1] considered how a robot
could communicate about intrinsically-sourced tasks that the
robot performs because of curiosity. It revealed that users
negatively viewed a robot that performed off-task actions while
also performing a task for the user; however, when the robot
communicated that curiosity motivated the off-task action, this
negativity was mitigated. In this work, we consider a similar
set-up, but we also include situations in which the inspection
task is not necessarily due to curiosity, but instead serves a
different user.

To the best of our knowledge, this is the first paper that
combines different ways to interleave tasks while communi-
cating the motivation for doing so.

III. METHOD

In order to understand the impact of task interleaving order
and task motive on people’s subjective opinions of the robot
behavior, we created an online study using videos of a Kuri
robot operating near two people. In a between-subjects design
inspired by Walker and colleagues [1] and constrained by the
conditions of the global pandemic, we asked participants to
observe the robot completing two tasks that were either inter-
leaved in various ways or not interleaved at all. Participants
were shown one of three motives for the robot completing the
tasks, and we measured participants’ satisfaction with the task
order as well as subjective ratings of the robot and its behavior.

A. Stimuli

We recorded videos with one robot and two people in a
university campus conference room. The robot was a Mayfield



Fig. 1: A still frame from the video: A woman reads at a table
on the left. A Kuri robot is on a path between boxes labeled
A through H. A man sits at a table using a laptop on the right.

Robotics Kuri1, a social robot that moves around on wheels
and has a 2-DOF rotating head, eyes with eyelids that open and
close, an HD video camera, a microphone, a speaker, spatial
sensors, and a light display in its upper torso. We used its
iOS app to Wizard-of-Oz its movements to ensure that the
robot executed under ideal conditions. We attached a cup to
the robot’s left side so it could carry small items.

From left to right, the room was arranged as follows: a
woman sat at a table reading a book; a series of eight blue
boxes labeled A through H was placed on the floor such that
three boxes (A, B, C) and two boxes (G, H) were placed in
line with the front of the table, and three boxes (D, E, F) were
placed in line with the back of the table with a path in between
the two rows; and a man sat at a table using a laptop (Figure
1). This layout was designed to be similar to that of previous
work [1] with the addition of another human in the space.

In all videos, the following things happened:
1) The robot began facing the woman near box A. The

video displayed the name Kate over the woman’s head
and John over the man’s head.

2) Kate said to the robot, “Robot, pick up a carrot from box
E and bring it to me.” The transcription of the message
was also displayed on the video.

3) The robot navigated to box E and turned to face it, away
from the camera.2

4) The robot returned to Kate with the carrot. She took the
carrot and said, “Thanks.”

5) The word “fin” was displayed after the video ended.
For some of the conditions described below, the robot

completed an inspection task in addition to the delivery task. In
the inspection task, it traveled to either box B or box G, turned
to face it, looked down at the box and then looked straight
ahead again. The order in which it interleaved the carrot
pickup, carrot delivery, and inspection task was manipulated
as was the communicated motive for the inspection task.

B. Design

Our study had a 4 x 3 design with an additional control
condition. Our first manipulation was to change the order of
the robot’s navigation actions as it performed the delivery and
inspection tasks. The robot could complete the inspection task
in one of four orders (Figure 2):

1https://www.heykuri.com/explore-kuri/
2We paused while recording and put a toy carrot in the cup for it to carry.

(a) Control

(b) Sequential

(c) EnRoute

(d) EnReturn

(e) Detour

Fig. 2: The five action ordering conditions. The arrows indicate
the robots movements in a top-down fashion. For example, in
the top image, the robot first went to E, and then back to Kate.

• EnRoute from Kate, stopping at box B to inspect, and
then continuing to the carrot pickup at box E.

• EnReturn after picking up the carrot from box E, stop-
ping to inspect box B before delivering the carrot to Kate.

• Detouring from the path to box E by navigating to box
G and inspecting it before continuing on to box E.

• Sequentially completing the entire delivery task and then
navigating to box B after Kate says “Thanks.”

To expand upon prior research [1], we also included a com-
munication motive manipulation with the following conditions:

• Unknown (UNK) - nothing was communicated about a
motive for the inspection task.

• Curious (CUR) - After seeing Kate’s request transcribed
on the screen, participants saw “The robot is curious
about what object is in box [B/G]” for 4s. After inspecting
the box the message “The robot observed that there are
3 pens in box [B/G]” was displayed for 4s.

• Second Request (2RQ) - After seeing Kate’s request
transcribed on the screen, participants saw “John emails
the robot to ask what object is in box [B/G]” for 4s. After
inspecting the box, the message “The robot emails John
that there are 3 pens in box [B/G]” was displayed for 4s.

This communicated motive was orthogonal to the order con-
dition. Any order could be combined with any motive. In the
Control condition, the robot did not complete the inspection
task, so there was no motive. It served as a manipulation check.

Every video with the same order condition was identical ex-
cept for any text communicating the motive for the inspection
task. The Control video lasted 45s; the other 12 videos ranged
in length from 1m08s to 1m15s due to slight variations in the
time it took the robot to turn and approach boxes.



C. Measures

Every participant was assigned to one of the 13 conditions,
viewed the corresponding video, and then was asked to answer
several questions and to rate what they saw. The first questions
included short answer prompts to describe what happened in
the video they watched and what word was displayed at the
end of the video. Then, they had to drag and drop a list of
actions that happened in the video into the correct order. They
were next asked to rate the robot along a 5-button scale for 20
characteristics that were drawn from Walker and colleagues
[1], who had in turn used some items from the Godspeed
[23] and RoSAS questionnaires [24] as well as adding original
items. These are listed in Table I. We added more questions
from the RoSAS questionnaire [24] and four of our own, and
we eliminated one item that was confusing.

We randomized the display order of the 20 items for every
participant and reversed the valence for 10 items in order to
prevent participants from responding identically to all [25].

Next, we asked the participants “Suppose the robot goes
over to Kate, and Kate asks the robot to get a pen from Box
E. As the robot begins to move, John sends it an email to ask
the robot to email him back telling him the contents of Box
B. In your opinion, how should the robot complete its tasks
when both Kate and John have a request? (Drag and drop the
list items into your preferred order.)” and then displayed the
following list items:

• Go to box E;
• Email John to tell him the contents of box B;
• Return to Kate to give her the item from box E;
• Go to box B.

Thus, we could assess whether participants preferred for the
robot to do Kate’s task to completion and then John’s versus
having the robot interleave the tasks to be more efficient.

For the conditions that showed two tasks (not the Control),
a summary of what happened in the video was presented next,
followed by rating on a 5-button scale from unsatisfied to
satisfied: “In your opinion, how do you feel about the order in
which the robot performed its tasks?” Then, the participants
were given a text box to respond to “Do you think that the
robot made the right choice in choosing the order of the
tasks? Why or why not?” Next, they again used 5-button
unsatisfied/satisfied scales to answer another item: “Imagine
that you are Kate, the person on the left side. How does Kate
feel about the order in which the robot performed its tasks?”.
For the 2RQ conditions, we added: “Imagine that you are
John, the person on the right side. How does John feel about
the order in which the robot performed its tasks?”

Finally, we explicitly asked all participants the yes or no
questions of whether a robot should be allowed to complete
tasks not in the order that they are received, and whether the
robot should be allowed to interrupt a task to complete another
task if that means it can complete all of the tasks faster3.

3Full survey provided at http://www.aiandhumans.com/taskinterleaving/
SupplementaryMaterials.pdf

Adjectives Order p Motive p Factor
capable/incapable∗ 0.0208 0.0006 COMP.
responsive/unresponsive∗ 0.0015 0.0002 COMP.
interactive/not interactive∗ 0.048 0.0276 –
reliable/unreliable∗ <0.0001 0.0139 COMP.
competent/incompetent∗ ‡ † 0.0016 0.0025 COMP.
knowledgeable/unknowledgeable∗‡ 0.0158 0.0284 COMP.
efficient/inefficient† <0.0001 <0.0001 COMP.
effective/ineffective† 0.0013 0.0122 COMP.
focused/unfocused† <0.0001 <0.0001 COMP.
responsible/irresponsible‡† 0.0011 0.0434 OBS.
intelligent/unintelligent‡† 0.0138 0.0001 OBS.
inquisitive/uninquisitive† (0.5876) <0.0001 CRS.
curious/incurious† 0.0078 <0.0001 CRS.
like/dislike‡† 0.0389 (0.333) OBS.
unintrusive/intrusive† (0.6006) 0.0115 –
humanlike/machinelike‡† (0.2758) <0.0001 CRS.
careful/careless <0.0001 0.0035 OBS.
on task/off task <0.0001 <0.0001 OBS.
attentive/inattentive 0.0006 <0.0001 OBS.
observant/unobservant 0.0125 <0.0001 OBS.

TABLE I: The 20 items that were rated and the significance
of the main effects for the manipulations. * items are from
RoSAS [24]; ‡ from Godspeed questionnaire [23]; † used by
Walker et al. [1]. Parentheses mark p > 0.05 main effects.

D. Hypotheses

• H1: A task executed for an unknown motive will be rated
more negatively than if the motive is known. (Motive
conditions: UNK vs. CUR and 2RQ.)

• H2: A task executed due to curiosity will be rated more
negatively than one due to a second human’s request.
(Motive conditions: CUR vs. 2RQ.)

• H3: Participants will prefer for the robot to be efficient
in its path rather than executing tasks in the order they
were received. (Order conditions: EnRoute, EnReturn,
and Detour vs. Sequential)

• H4: People will feel negatively about a robot that goes
out of its way to visit an additional location. (Order
conditions: Detour vs. EnRoute and EnReturn)

Our work also included manipulation checks. For example,
a robot that was described in the text as curious should receive
higher ratings for scale items about curiosity and inquisitive-
ness than a robot that did not receive that description.

E. Participants

We used the Prolific.co research recruitment website to ob-
tain participants. After completing an informed consent form
and affirming that they met the criteria, they were redirected
to the experiment itself, which was hosted on Qualtrics. In
total, the study took an average of 658 seconds (stdev = 328)
to complete; participants were reimbursed $2 for their time.

In total, 390 participants successfully completed this
between-participants study, 30 each for 13 conditions. An
additional 17 participants were eliminated for failing attention
checks.4 In order to be eligible for the research, participants

4For inclusion, participants had to correctly answer what word was dis-
played at the end of the video. If they failed to do so, we checked if they
correctly identified the order of occurrences in the video and if they provided
a reasonable response when asked to describe these occurrences. If not, they
were eliminated from the dataset but still paid for their time.



needed to be 18 years of age or older, fluent in English,
and have normal or corrected-to-normal hearing and vision in
order to be able to hear and see the videos and complete the
task. They also needed a laptop or desktop computer capable
of playing sound. Demographic data was available for 384
participants. 137 self-identified as male and 247 as female;
their mean age was 25.68 years (18-59, stdev = 7.33). Partic-
ipants most commonly listed their nationalities as from South
Africa (103), the United States (99), the United Kingdom (38),
Portugal (25), Poland (16), and Mexico (15).

IV. RESULTS

We present the results into two parts. First, we look at
the 20-item rating scale capturing participants’ perceptions of
the robot. Then, we look at participants’ answers about ideal
ordering/interleaving of the robot’s tasks.

A. Do perceptions of robots vary based on order or motive?

To analyze participants’ perception of the robot, we per-
formed a REstricted Maximum Likelihood (REML) analy-
sis to examine each of the 20 items on the rating scale
individually for the 4 x 3 condition manipulations (totaling
12 conditions), ignoring the Control condition. To examine
pairwise comparisons within effects, we used the Tukey HSD
metric. All significance values had a threshold of p < 0.05;
they are presented in Table I. For the four order conditions,
significant main effects were found for 17 of the 20 items:
capable, responsive, interactive, reliable, competent, knowl-
edgeable, efficient, effective, focused, responsible, intelligent,
curious, like, careful, on task, attentive, and observant. Pair-
wise comparisons revealed that the Sequential condition was
rated significantly more positively than all other orders for
reliable, competent, efficient, effective, and focused. In the
Sequential condition, the robot was rated as significantly more
capable than in EnReturn; more responsive, knowledgeable,
intelligent, attentive, and observant than in Detour; and more
liked, attentive, and observant than in EnRoute. There were no
significant effects for inquisitive, unintrusive, and humanlike.

There was a significant main effect of motive for 19 of
20 items, all except like. The robot in the 2RQ condition
was significantly more efficient, focused, careful, on-task, and
attentive than in CUR and UNK; it was more responsible,
interactive, reliable, competent, knowledgeable, effective, and
intelligent than in the UNK condition; and it was more
unintrusive than in the CUR condition. The robot in the CUR
condition was more curious, inquisitive, humanlike, and obser-
vant than in the UNK and 2RQ conditions; it was also more
capable and intelligent than in the UNK condition. Finally,
the robot in the UNK condition was rated significantly more
focused, unintrusive, and on-task than in the CUR condition
and more curious than in the 2RQ condition.

There was only one significant interaction between order
and motive, for competence (F = 2.49, p = 0.02).

1) Factor analysis: We performed an exploratory factor
analysis with varimax rotation to examine item correlations
and used a cutoff for eigenvalues > 1 to identify three

factors. Table I details the items that were in each of three
factors - Competent (COMP), Observant (OBS), and Curious
(CRS). The interactive and intrusive items did not clearly load
onto any factors with an absolute loading value greater than
0.4. Overall, the factors correlated at 0.39 due to significant
correlations between the first two factors; the third factor was
not significantly correlated with the other two. Within each
factor, we created a mean score for the component adjectives.

Figures 3a and 3b show the differences in our Motive and
Order conditions by Factor. For the Competent factor, there
was a significant main effect of order (F = 12.35, p < 0.001),
with pairwise comparisons revealing that Sequential was sig-
nificantly more positively rated than each of the other three
conditions. There was also a significant main effect of motive
(F = 14.09, p < 0.001), with 2RQ rated significantly better
than either CUR or UNK. The Observant factor showed a
similar pattern of effects with a significant main effect of
order (F = 8.28, p = 0.0003) and Sequential rated higher
than each other order. Also, the significant main effect of
motive (F = 11.72, p < 0.001) for the OBS factor showed
that 2RQ was significantly better rated than CUR or UNK.
For the Curious factor, there was again a significant main
effect of order (F = 2.86, p = 0.0368); EnReturn was
rated significantly better than EnRoute. The motive conditions
were also significant (F = 103.16, p < 0.0001), wherein the
CUR condition received different ratings than the other two
conditions. There were no significant interactions.

2) Control comparison: We examined the Control condi-
tion separately and compared it to all 12 other conditions
combined. This comparison was statistically significant with
a Benjimini-Hochberg correction (Q = 0.20) [26] such that
Control was rated more effective (t = 2.78, p = 0.0057),
focused (t = 3.10, p = 0.0020), uninquisitive (t = 2.90, p =
0.0040), incurious (t = 4.95, p < 0.0001), and on-task
(t = −3.38, p = 0.0008) than the other conditions combined.

B. In what order should tasks be completed?

To examine how people felt about the robot’s different
task orders, we analyzed the participant and Kate satisfaction
ratings questions asked to the non-Control participants, the
John satisfaction rating question asked to the 2RQ participants,
the drag-and-drop question where all participants described
their preferred order for a second request situation, and the
questions where all participants responded with yes or no
about whether the robot should be allowed to complete tasks
out of order and to interrupt one task with another.

1) Are you satisfied with the order?: Participants in all
but the Control condition were asked to rate their satisfaction
with the order in which the robot performed its tasks. We
used a standard least squares model to examine the impact
of order, motive, and the interaction of the two. We found a
significant effect overall (r2 = 0.27, F = 11.81, p < 0.0001)
and significant effects of order (F = 32.41, p < 0.0001)
and motive (F = 10.25, p < 0.0001), but no significant
interaction. For order, Sequential had the highest least squares
mean and was significantly higher than all other conditions in



(a) Factor Ratings by Task Motive (b) Factor Ratings by Task Order

Fig. 3: (a, b) Ratings for the factors; lower is better. Error bars show standard error. Black lines show statistical significance.

pairwise comparisons. Detour was significantly lower than all
other conditions. This suggests that participants believe that
Kate’s task should be done to completion before other tasks,
but if it is necessary to interleave tasks, the robot should not
go out of its way. For motive, 2RQ was significantly higher
than UNK or CUR, suggesting that participants felt that it was
better for the robot to have a task request from another human
to justify performing another task versus CUR or UNK.

2) Would Kate have been satisfied?: Participants in all but
the Control condition were asked to rate Kate’s imagined
satisfaction with the order in which the robot performed its
tasks. We found a generally similar pattern of results to partici-
pants’ satisfaction: a significant effect overall (r2 = 0.29, F =
12.91, p < 0.0001), of order (F = 40.48, p < 0.0001),
and of motive (F = 3.89, p = 0.0213). There was also a
significant impact of the interaction between order and motive
(F = 2.13, p = 0.0490). Again, Sequential was the order
condition most correlated with satisfaction and Detour was
significantly less correlated with satisfaction than the other
conditions. Thus, participants believed that Kate was more
likely to be satisfied if her task was done to completion before

Fig. 4: Participants’ suggested task order. ˜ denotes similarity
to a tested path that is not exactly the same.

any other action occurred and less likely to be satisfied if the
robot went out of the way before completing her delivery task.
For motive, UNK was significantly more positively correlated
with Kate’s satisfaction than CUR. Participants did not think
that Kate was likely to be satisfied with a curious robot.

3) Would John have been satisfied?: For John’s satisfaction
scores in the 2RQ conditions, there was a significant corre-
lation overall (r2 = 0.24, F = 11.95, p < 0.0001) and an
effect of order specifically (F = 11.95, p < 0.0001). Within
order, the Sequential condition was significantly less correlated
with John’s satisfaction score than all other conditions. Thus,
participants were not as likely to rate John as satisfied if Kate’s
task was done to completion before John’s task was begun as
it would have taken longer for him to get an answer.

4) What order would be best if there are two requests?:
We assessed participant responses when they were asked to
order the robot’s navigation actions when tasked with both
Kate’s and John’s requests (Figure 4). Upon reviewing the
responses, we realized that while most participants’ answers
put the beginning-to-ending steps from top to bottom, some
responses only were possible if read from bottom (beginning)
to top (ending). The instructions were not specific as to which
hierarchy was preferred, so we accepted both orderings.

156 participants recommended the order 1 (Go to Box
E), 4 (Go to Box B), 2 (Email John), 3 (Return to Kate).
An additional 115 participants recommended the reverse or-
der (3-2-4-1, impossible if not interpreted in reverse), for
a total of 271 endorsing the order that was similar to our
EnReturn condition. Another popular response was 1-4-3-2
(45 participants) and its reverse (8 participants), which was
similar to EnRoute. The last popular choice was 1-3-4-2,
which was similar to our Sequential condition. 33 people
endorsed this in the top-to-bottom direction and 14 selected
it in reverse order. Less popular options included 2-3-1-4 (4
participants), which reverses to 4-1-3-2 (0 participants) and is
also somewhat similar to EnRoute. Another participant chose
3-2-1-4, the reverse of 4-1-2-3 (0 participants), which would



Total Seq. EnRoute EnReturn Det.
Yes 182 77 37 39 29
No 148 6 45 46 51
Maybe 30 7 8 5 10
Total 360 90 90 90 90

(a) Responses by Task Order
Total UNK CUR 2RQ

Yes 182 54 43 85
No 148 52 68 28
Maybe 30 14 9 7
Total 360 120 120 120

(b) Responses by Task Motive

Fig. 5: Did the robot make the right choice for task order?

be similar to EnRoute. An additional 14 participants chose
orders that did not make sense in either direction. Together,
these results suggest that participants prefer the efficiency
of an EnRoute/EnReturn visit to Box B, particularly if it is
performed after going to Box E to get the item for Kate.

5) Did the robot make the right choice in order?: Finally,
we examined whether the non-Control participants thought
that the robot made the right choice for the order of the tasks.
An experimenter coded the answers for valence. Overall, 182
participants said yes, it made the right choice; 148 said no;
and 30 were ambivalent, confused, or provided caveats and
alternatives (labeled “maybe”). A nominal logistic analysis
was significant (χ2 = 174.44, p < 0.0001) and found an effect
of order on the answers (χ2 = 88.68, p < 0.0001) and an in-
teraction between order and motive (χ2 = 53.97, p < 0.0001).
Figures 5a and 5b show responses for order and motive.

In general, participants who viewed the Sequential condition
believed that it was the right choice, and many explained
that they endorsed a “first come, first served” approach. The
few who did not approve often cited inefficiency. Among the
EnRoute participants, those who also saw CUR were distinctly
unhappy with the route. Many of those participants made
comments along the same line as this participant: “No, because
it should have completed the request first, delivered it and only
then checked what was in box B.” This was also similar to
participants who saw EnReturn: the CUR condition was the
worst, and participants thought that slowing Kate’s task down
for the sake of curiosity was not acceptable. The 2RQ motive
mitigated much of this disapproval in the EnReturn condition;
for example, a participant noted, “I think it made the right
choice, since it’s the fastest way.... It might not be the fairest
to Kate, but overall it is the best choice.”

In some cases, participants imagined justifications for why
the robot was doing something that they found to be confusing,
particularly in conditions where the motive was unknown
(UNK). These justifications included, “He [the robot] might
have gone to box B to look for a closer carrot,” a sentiment
shared by many. One participant said, “Partially. The robot
should not have stopped at box B because it was simply
instructed to give the carrot to Kate, but then again, maybe the
robot got confused a bit because “me” sounds a bit like B.”
This idea of mishearing was also posited by other participants.

These findings and the results of the order preferences are
somewhat in contrast with participants’ responses when they
were forced to answer yes/no questions about what kinds of
orders are allowable. When all of the participants were asked
if a robot should be allowed to complete tasks in an order other
than which they were received to be more efficient, 289 partic-
ipants chose yes and 101 chose no, χ2 = 28.10, p = 0.0031,
with significance for motive (χ2 = 13.04, p = 0.0015) and the
interaction of motive and order (χ2 = 19.74, p = 0.0031). If
they had seen 2RQ, they were more likely to say yes than if
they saw UNK or CUR. When asked if the robot should be
able to interrupt a task to complete another task if that means it
can complete all of them faster, 255 said yes and 135 said no;
there was no overall significance (χ2 = 16.20, p = 0.1338)
and no effects of order or motive. These findings suggest that
while participants might not be satisfied witnessing a robot
performing tasks out of order, they would still allow it.

V. DISCUSSION

We first discuss our results in the context of our four
hypotheses; then, we discuss the results more generally.

H1: A task executed for an unknown reason will be rated
more negatively than if the reason is known. We examined
the three motive conditions, comparing the UNK condition to
CUR and 2RQ (Sec. IV.A). For the 20-item rating scale, the
participants in the UNK condition rated the robot less efficient,
focused, careful, on-task, and attentive than in the 2RQ
condition and less curious, inquisitive, humanlike, observant,
capable, and intelligent than in the CUR condition. When we
used the three factors developed from that scale, we did not
find a significant main effect of motive. We also looked at
participants’ short-answer responses about whether they liked
the path order that they saw the robot take (Sec. IV.B.5).
Motive did affect whether participants approved of the robot’s
behavior overall, but the UNK condition was about equally
approved and disapproved, placing it between 2RQ (generally
approved) and CUR (mostly disapproved). Interestingly, some
participants provided their own potential explanations for the
robot’s behavior (Sec. IV.B.5), such as mishearing the request
or looking for a closer place to get the requested item. Overall,
these findings partially support H1; UNK was viewed overall
more favorably than CUR and less favorably than 2RQ.

H2: A task executed due to curiosity will be rated more
negatively than when it is due to a second human request. We
compared the CUR condition to 2RQ and found on the rating
items that 2RQ was perceived to be more efficient, focused,
careful, on-task, attentive, and unintrusive than CUR. Also,
the Competent and Observant factors had significantly higher
ratings for 2RQ than CUR. Finally, 85 of 120 participants in
2RQ approved of the robot’s behavior, relative to only 43 of
120 in the CUR condition. The findings support H2.

Similar to prior work [1], we find that communicating a
curiosity motive helped improve some perceptions of the robot
among our participants over an absence of explanation. The
effect of this sort of communication paled in comparison to



that of the second request motive. However, our Sequential-
CUR condition testing the perception of a curious inspection
task after the delivery task was completed was perceived much
better than if it was done before delivery, indicating that
curiosity is allowed, but people want the robot to complete
tasks for other people before prioritizing the robot’s interests.

More work is needed on the impact of thorough communi-
cation about the motivation for tasks. Having more information
about whether multiple task requesters know about everyone’s
requests (we purposely did not make it explicit whether Kate
or John knew about the other task) or having descriptions of
the rules that the robot uses to guide its decisions could influ-
ence people’s opinions about task order. We expect it might
also affect Kate’s and John’s expected ratings of satisfaction.

H3: Participants prefer for the robot to be efficient in its
path rather than to go in the order tasks were received.
We compared EnRoute, EnReturn, and Detour to Sequential.
For the 20-item ratings, Sequential was typically rated more
positively than the other, more efficient conditions. When
examining the Competent and Observant factors, Sequential
was rated highest as well. Thus, efficiency mattered less than
finishing the first task first for people’s subjective ratings
of these traits. However, this finding contrasted with other
results. When asked to create their ideal task order for fulfilling
two requests, participants were most likely to choose efficient
paths. Also, they overwhelmingly said yes when asked if a
robot should be allowed to complete tasks not in the order
that they are received and whether the robot should be allowed
to interrupt one task to complete another if that means it can
complete all tasks faster. These findings largely support H3.

H4: People will feel negatively about a robot that goes out of
its way to visit an additional location. We examined the Detour
condition versus the EnRoute and EnReturn conditions. The
20-item rating task and subsequent factor analysis did not show
a stable pattern of effects in which Detour was consistently
rated worse than other conditions. However, there were slight
indications of a negative relationship. For example, it got the
most votes of disapproval when participants were asked if they
were satisfied with the robot’s behavior in the videos. Also,
the ratings where some participants assessed Kate’s imagined
feelings of satisfaction were lower for Detour. Therefore, we
conclude that our findings partially support H4.

The limited support of this hypothesis suggests some inter-
esting avenues for future research. One possible explanation
for these findings is that users prefer efficiency when it benefits
or does not impact them, but not when it is to their detriment.
Our study was limited by the requirement that it be performed
online using videos. For in-person research, there would be
more options in terms of who could make requests and the
types of tasks that could be requested. For example, live
participants could be the requesters to explore the impact of
the task interleaving. Additionally, the robot’s agenda could
stretch across hours, days, or longer, with each task occurring
over a large geographic area, such as an office building. In
these cases, efficiency may become of greater concern and so
may be perceived differently. Moreover, people might expect

to wait longer for their requests to be fulfilled; adding a few
minutes to a task that already takes half an hour may have a
different impact than adding a few minutes to a task that takes
five minutes. Finally, the objects being retrieved may also have
an impact on perceived efficiency. For example, objects that
are important to deliver quickly—such as an ice cream—may
take precedence over a request for an inspection task because
of the potential ill effects of late deliveries.

Summary: Overall, we found that people viewed the robot
as less competent when watching it perform a task that was not
justified by a second requester, such as if they were provided
no motivation or when the provided motivation was that the
robot was curious. Even when there was a second request,
participants viewed the sequential task order as indicating
higher competence than the interleaved order. However, when
asked about interleaving, they did report that a robot should
interleave tasks and 2/3 of them recommended an interleaved
path for performing two tasks for different requesters.

People’s perceptions of these behaviors are useful to un-
derstand when building robots that are dynamically or asyn-
chronously tasked by users, such as in an office environment
[27]. This work suggests that a strict optimization of oper-
ation time, which encourages maximal interleaving of tasks,
may do so at the cost of user satisfaction. Our results also
suggest, however, that this efficiency/satisfaction trade-off can
be mitigated by communicating the robot’s motivation, such
as by displaying a screen with current requests. Therefore, we
recommend that: (1) robots performing tasks for more than one
user or purpose should provide information to each user about
how and why it is ordering the tasks the way that it is; (2) users
should receive activity justifications from robots that show
extrinsic rather than intrinsic motivations; and (3) designers
should consider that explanations affect whether users accept
sequential or interleaved task orders and can be leveraged to
improve perceptions of a robot.

Our research replicated prior work that examined using
curiosity to justify a robot’s off-task behaviors [1] and ex-
panded that line of research to include a second task request
as motivation to deviate from a task. This is a more realistic
scenario, but future work is still needed to evaluate the condi-
tions under which the interleaved tasks increase perceptions
of competence and when they are viewed as undesirable.
Additionally, this research was constrained to be an online
study by the conditions of the COVID-19 pandemic; ideally,
participants will be able to come and participate in research
as task requesters in the future.
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